A rotary converter is a type of electrical machine which acts as a mechanical rectifier or inverter. It was used to convert AC to DC or DC to AC power before the advent of chemical or solid state power rectification. They were commonly used to provide DC power for commercial, industrial and railway electrification from an AC power source.
Contents |
The rotary converter can be thought of as a motor-generator where the two machines share a single rotating armature and set of field coils. The basic construction of the rotary converter consists of a DC generator (dynamo) with a set of slip rings tapped into its rotor windings at evenly spaced intervals. When a dynamo is spun the electric currents in its rotor windings alternate as it rotates in the magnetic field of the stationary field windings. This alternating current is rectified by means of a commutator which allows DC current to be extracted from the rotor. This principle is taken advantage of by energizing the same rotor windings with AC power which causes the machine to act as a synchronous AC motor. The rotation of the energized coils excites the stationary field windings producing part of the DC current. The other part is AC current from the slip rings which is directly rectified into DC by the commutator. This makes the rotary converter a hybrid dynamo and mechanical rectifier. When used in this way it is referred to as a synchronous rotary converter or simply a synchronous converter. The AC slip rings also allow the machine to act as an alternator. The device can be reversed and DC applied to the field and commutator windings to spin the machine and produce AC power. When operated as a DC to AC machine it is referred to as an inverted rotary converter.
One way to envision what is happening in an AC-to-DC rotary converter is to imagine a rotary reversing switch that is being driven at a speed that is synchronous with the power line. Such a switch could rectify the AC input waveform with no magnetic components at all save those driving the switch. The rotary converter is somewhat more complex than this trivial case because it delivers near-DC rather than the pulsating DC that would result from just the reversing switch, but the analogy may be helpful in understanding how the rotary converter avoids transforming all of the energy from electrical to mechanical and back to electrical.
The advantage of the rotary converter over the discrete motor-generator set is that the rotary converter avoids converting all of the power flow into mechanical energy and then back into electrical energy; some of the electrical energy instead flows directly from input to output, allowing the rotary converter to be much smaller and lighter than a motor-generator set of an equivalent power-handling capability. The advantages of a motor-generator set include adjustable voltage regulation which can compensate for voltage drop in the supply network; it also provided complete power isolation, harmonics isolation, greater surge and transient protection, and sag (brownout) protection through increased momentum.
In this first illustration of a single-phase to direct-current rotary converter, it may be used five different ways:[4]
A typical use for an AC/DC converter was for railway electrification, where utility power was supplied as alternating current (AC) but the trains were designed to work on direct current (DC). Before the invention of mercury arc rectifiers and high-power semiconductor rectifiers, this conversion could only be accomplished using motor-generators or rotary converters.
Most machinery and appliances were operated by DC power at the turn of the century which was provided by rotary converter substations for residential, commercial and industrial consumption. Rotary converters provided high current DC power for industrial electrochemical processes such as electroplating. Steel mills needed large amounts of on site DC power for their main roll drive motors.
AC to DC synchronous rotary converters were made obsolete by mercury arc rectifiers in the 1930s and later on by semiconductor rectifiers in the 1960s[5]. Some of the original New York City MTA railway substations using synchronous rotary converters operated until 1999[6]. Compared to the rotary converter, the mercury arc and semiconductor rectifiers did not need daily maintenance, manual synchronizing for parallel operation, skilled personnel and they provided clean DC power. This enabled the new substations to be unmanned, only requiring periodic visits from a technician for inspection and maintenance. AC replaced DC in most applications and eventually the need for local DC substations diminished along with the need for rotary converters. Many DC customers converted to AC power, and on-site solid-state DC rectifiers were used to power the remaining DC equipment from the AC supply.
The self-balancing dynamo is of similar construction to the single- and two-phase rotary converter. It was commonly used to create a completely balanced three-wire 120/240-volt DC electrical supply. The AC extracted from the slip rings was fed into a transformer with a single center-tapped winding. The center-tapped winding forms the DC neutral wire. It needed to be driven by a mechanical power source, such as a steam engine, diesel engine, or electric motor. It could be considered a rotary converter used as a double current generator; the AC current was used to balance the DC neutral wire.